Convert output to Pandas DataFrame¶
Low level interface functions return equilibrium concentrations as Numpy arrays. The high level interface functions (eqtk.solve()
, eqtk.fixed_value_solve()
, and eqtk.volumetric_titration()
) can also return Numpy arrays if the input is also Numpy arrays and the names
keyword argument is unspecified. After performing a calculation that returns Numpy arrays, the user may with to convert the output to a Pandas Series of DataFrame for convenience in plotting or for further processing. The eqtk.to_df()
function provides this functionality.
Before demonstrating how to use the function, it is important to note that the preferred way to generate rich output is to generate it directly from the high level interfaces by supplying arguments that enable return of DataFrames. The eqtk.to_df()
function is only meant as a post processing step if the user either neglected to provide descriptive input to the high level interface function or chose to use the low level interface for speed purposes.
As a demonstration, we will use the example chemical reaction system
The annotated stoichiometric matrix is
with equilibrium constants
We will first solve the coupled equilibrium problem using eqtk.solve()
with all input as Numpy arrays and without the names
keyword argument.
N = np.array([[-1, 0, 1, 0, 0, 0],
[ 1, 1, 0, -1, 0, 0],
[ 0, 2, 0, 0, -1, 0],
[ 0, 1, 1, 0, 0, -1]])
c0 = np.array([1, 1, 0, 0, 0, 0])
K = np.array([0.05, 0.02, 0.1, 0.01])
c = eqtk.solve(c0=c0, N=N, K=K, units='mM')
Here, we have calculated the equilibrium concentrations for a single set of initial conditions, so calling eqtk.to_df()
will return a Pandas Series.
names = ['A', 'B', 'C', 'AB', 'BB', 'BC']
c_series = eqtk.to_df(c=c, c0=c0, names=names, units='mM')
The result is
A__0 (mM) 1.000000
B__0 (mM) 1.000000
C__0 (mM) 0.000000
AB__0 (mM) 0.000000
BB__0 (mM) 0.000000
BC__0 (mM) 0.000000
A (mM) 0.188228
B (mM) 0.077504
C (mM) 0.009411
AB (mM) 0.729418
BB (mM) 0.060068
BC (mM) 0.072942
dtype: float64
If, however, we consider a set of concentrations, we get a DataFrame when converting using eqtk.to_df()
.
c0 = np.array([[1.0, 1.0, 0, 0, 0, 0],
[0.5, 0.5, 0, 0, 0, 0],
[0.1, 0.1, 0, 0, 0, 0]])
c = eqtk.solve(c0=c0, N=N, K=K, units='mM')
c_df = eqtk.to_df(c=c, c0=c0, names=names, units='mM')
The result is has columns ['A__0 (mM)', 'B__0 (mM)', 'C__0 (mM)', 'AB__0 (mM)', 'BB__0 (mM)', 'BC__0 (mM)', 'A (mM)', 'B (mM)', 'C (mM)', 'AB (mM)', 'BB (mM)', 'BC (mM)']
and has three rows, one for each set of concentrations. Executing print(c_df[c_df.columns[~c_df.columns.str.contains('__0')]])
gives
A (mM) B (mM) C (mM) AB (mM) BB (mM) BC (mM)
0 0.188228 0.077504 0.009411 0.729418 0.060068 0.072942
1 0.118379 0.057704 0.005919 0.341547 0.033297 0.034155
2 0.039494 0.026946 0.001975 0.053211 0.007261 0.005321